Multisensor Data Fusion and Integration in NDT
In a previous publication the concept of data fusion applied to non-destructive testing (NDT) was introduced [1]. The present book explores the concept of NDT data fusion through a comprehensive review and analysis of current applications. Its main objective is to provide the NDT community with an up-to-date publication containing writings by authoritative researchers in the field of data fusion. It is not intended to give rigorous scientific details, but more a pragmatic overview of several applications of data fusion for materials evaluation and condition monitoring.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 117.69 Price includes VAT (France)
Softcover Book EUR 158.24 Price includes VAT (France)
Hardcover Book EUR 158.24 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Similar content being viewed by others
Nondestructive Inspection (NDI)
Chapter © 2021
Sensors Used in Structural Health Monitoring
Article 17 March 2017
In situ detection of welding defects: a review
Article 21 January 2022
References
- Gros X.E., NDT Data Fusion, Butterworth-Heinemann, 1997. Google Scholar
- Dasarathy B.V., Sensor fusion potential exploitation — Innovative architectures and illustrative applications, Proc. IEEE, 1997, 85(1):24–38. ArticleGoogle Scholar
- Hall D.L., Llinas J., An introduction to multisensor data fusion, Proc. IEEE, 1997,85(l):6–23. ArticleGoogle Scholar
- Spedding V., Computer integrate disparate data, Scientific Computing World, 1998, (38):22–23. Google Scholar
- Georgel B., Lavayssière B., Fusion de données: un nouveau concept en CND, Proc. 6 th European Conf. on NDT, 1994, Nice, France, 1:31–35. Google Scholar
- Gros X.E. Strachan P., Lowden D.W., Edwards I., NDT data fusion, Proc. 6 th European Conf. on NDT, 1994, Nice, France, 1:355–359. Google Scholar
- Dessendre M., Thevenot F., Liot A., Tretout H., Exmelin A., NDT and CAD data fusion for diagnosis assistance and diffusion bonding improvement, Proc. COFREND Congress on NDT, 1997, Nantes, France. Google Scholar
- Valet L., Mauris G., Bolon P., A statistical overview of recent literature in information fusion, Proc. 3 rd Inter. Conf. on Information Fusion, 2000, Paris, France. Google Scholar
- Nelson J.M., Cruikshank D., Galt S., A flexible methodology for analysis of multiple-modality NDE data, Proc. Review of Progress in QNDE, 1989, LaJoila, USA, 8:819–826. Google Scholar
- Janney D.H., Image processing in nondestructive testing, Proc. 23 rd Sagamore Army Materials Research Conf. on the Nondestructive Characterization of Materials, 1979, 409–420. Google Scholar
- Troll tunnel inspection ROV piloted in virtual reality mode. Offshore, 1996, 56:141–142. Google Scholar
- Gros X.E., Strachan P., Lowden D., Fusion of multiprobe NDT data for ROV inspection, Proc. MIS/IEEE Conf. Oceans’95,1995, San Diego, USA, 3:2046–2050. Google Scholar
- Gianaris NJ., Green R.E., Statistical methods in material manufacturing and evaluation, Materials Evaluation, 1999, 57(9):944–951. Google Scholar
- Lallier E., Farooq M., A real time pixel-level based image fusion via adaptive weight averaging, Proc. 3 rd Inter. Conf. on Information Fusion, 2000, Paris, France. Google Scholar
- Petrović V., Xydeas C, Computationally efficient pixel-level image fusion, Proc. 3 rd Inter. Conf. on Information Fusion, 2000, Paris, France. Google Scholar
- Fu P., Hope A.D., Javed M.A., Fuzzy classification of milling tool wear, Insight, 1997, 39(8):553–557. Google Scholar
- Goebel K., Badami V., Perera A., Diagnostic information fusion for manufacturing processes, Proc. 2 nd Inter. Conf. on Information Fusion, FUSION'99,1999, Sunnyvale, USA, 1:331–336. Google Scholar
- Liu Z., Gros X.E., Tsukada K., Hanasaki K., 3D visualization of ultrasonic inspection data by using AVS, Proc. 5 th Far-East Conf. on NDT, 1999, Renting, Taiwain, 549–554. Google Scholar
- Pastorino M., Inverse-scattering techniques for image reconstruction, IEEE Instrumentation & Measurement Magazine, 1998, 1(4):20–25. ArticleGoogle Scholar
- Summa D.A., Claytor T.N., Jones M.H., Schwab M.J., Hoyt S.C., 3-D Visualisation of x-ray and neutron computed tomography (CT) and full waveform ultrasonic (UT) data, Proc. Review of Progress in QNDE, 1999, Snowbird, USA, 18A:927–934. Google Scholar
- Vengrinovich V.V., Denkevich Y.B., Tillack G.R., Jacobsen C., 3D x-ray reconstruction from strongly incomplete noisy data, Proc. Review of Progress in QNDE, 1999, Snowbird, USA, 18A:935–942. Google Scholar
- Reed J.M., Hutchinson S., Image fusion and subpixel parameter estimation for automated optical inspection of electronic component, IEEE Trans, on Industrial Electronics, 1996, 43(3):346–354. ArticleGoogle Scholar
- Bossi R.H., Nelson J., NDE Data Fusion, Proc. ASNT Fall Conf., 1997, Pittsburgh, USA. Google Scholar
- Matuszewski B.J., Shark L.K., Varley M.R., Smith J.P., Region-based wavelet fusion of ultrasonic, radiographic and shearographic non-destructive testing images, Proc. 15 th World Conf. on NDT, 2000, Rome, Italy, paper N°263. Google Scholar
- Siegel M., Gunatilake P., Enhanced remote visual inspection of aircraft skin, Proc. Workshop on Intelligent NDE Sciences for Ageing and Futuristic Aircraft, 1997, El Paso, USA, 101–112. Google Scholar
- Paul French, Biomedical optics, Physics World, 1999, 12(6):41–46. ArticleGoogle Scholar
- Ault T., Siegel M.W., Frameless patient registration using ultrasonic imaging, J. of Image Guided Surgery, 1995, 1(2):94–102. ArticleCASGoogle Scholar
- Strangman G., Under doctors’ orders for a digital revolution, Scientific Computing World, 2000, (52):27–30. Google Scholar
- Zachary J.M., Iyengar S.S., Three dimensional data fusion for biomedical surface reconstruction, Proc. 7 th Fusion Conf., 1999, Sunnyvale, USA. Google Scholar
- Gautier L., Taleb-Ahmed A., Rombaut M., Postaire J.-G., Leclet H., Belief function in low level data fusion: application in MRI images of vertebra, Proc. 3 rd Inter. Conf. on Information Fusion, 2000, Paris, France. Google Scholar
- Mangin J.F., Stévenet J.F., Le cerveau s’affiche en dynamique et en haute définition, CEA Technologies, 2000, (49):2. Google Scholar
- Dupuis O., Fusion entre les données ultrasonores et les images de radioscopie à haute Résolution: application au contrôle de cordon de soudure, PhD Thesis, 2000, INSA Lyon, France. Google Scholar
- Dupuis O., Kaftandjian V., Drake S., Hansen A., Ffreshex: a combined system for ultrasonic and X-ray inspection of welds, Proc. 15 th World Conf. on NDT, 2000, Rome, Italy, paper N°286. Google Scholar
- Just V., Fleuet E., Gautier S., The BE-MISTRAL project: a fully multi-technique approach from acquisition to data fusion, Proc. 7 th ECNDT, 1998, Copenhagen, Denmark 2:1608–1613. Google Scholar
- Jain A.K., Dubuisson M.P., Madhukar M.S., Multi-sensor fusion for nondestructive inspection of fiber reinforced composite materials, Proc. 6 th Tech. Conf. of the American Society for Composites, 1991, 941–950. Google Scholar
- Yanowitz S.D., Bruckstein A.M., A new method for image segmentation, Computer Vision, Graphics and Image Processing, 1989, 46(4):82–95. ArticleGoogle Scholar
- Barniv Y., Casasent D., Multisensor image registration: experimental verification, Proc. SPIE, Process. Images and Data from Optical Sensors, 1981, San Diego, USA, 292:160–171. Google Scholar
- Akerman A., Pyramidal techniques for multisensor fusion, Proc. SPIE, Sensor Fusion V, 1992, Boston, USA, 1828:124–131. Google Scholar
- Haberstroh R., Kadar I., Multi-spectral data fusion using neural networks, Proc. SPIE, Signal processing, sensor fusion, and target recognition H, 1993, Orlando, USA, 1955:65–75. Google Scholar
- L. Ghouti, A novel method for automatic defect classification using artificial neural networks, Proc. Review of Progress in QNDE, 1999, Snowbird, USA, 18A:843–850. Google Scholar
- Wang C, Cannon D.J., Virtual-reality-based point-and-direct robotic inspection in manufacturing, IEEE Trans, on Robotics and Automation, 1996, 12(4):516–531. ArticleGoogle Scholar
- Hannah P., Starr A., Ball A., Decisions in condition monitoring — an example for data fusion architecture, Proc. 3 rd Inter. Conf. on Information Fusion, 2000, Paris, France. Google Scholar
- Stover J.A., Hall D.L., Gibson R.E., A fuzzy-logic architecture for autonomous multisensor data Jusion, IEEE Trans, on Industrial Electronics, 1996, 43(3):403–410. ArticleGoogle Scholar
- Russo F., Recent advances in fuzzy techniques for image enhancement, IEEE Instrumentation & Measurement Magazine, 1998, 1(4):29–32. ArticleGoogle Scholar
- Benoist Ph., Besnard R., Bayon G., Boutaine JL., CIVA poste d’expertise en controle non destructif, Proc. 6 th Europ. Conf. on NDT, 1994, Nice, France, 2:1311–1315. Google Scholar
- Benoist P., Besnard R., Bayon G., Boutaine J.L., CIVA Workstation for NDE: Mixing of NDE Techniques and Modeling, Review of Progress in QNDE, Plenum Press, 1995, Snowmass Village, USA, 14B:2353–2360. Google Scholar
- Nockemann C, Heine S., Johannsen K., Schumm A., Vailhen O., Nouailhas B., Raising the reliability of NDE by combination and standardisation ofNDT-data using the Trappist system, Proc. Review of Progress in QNDE, 1996, Seattle, USA, 15A:1975–1982. Google Scholar
- Just V., Gros P.O., Soors C, Francois D., PACE a comprehensive multitechnique analysis system applied to the analysis of bottom head penetration tubes NDT data, Proc. 7 th Euro. Conf. on NDT, 1998, Copenhagen, Denmark, 2:1442–1447. Google Scholar
- Dargahi J., Payandeh S., Surface texture measurement by combining signals from two sensing elements of a piecoelectric tactile sensor, Proc. SPIE AeroSense Conf., 1998, Orlando, USA, 3376:122–128. Google Scholar
- Taylor O., Mayintyre J., Adaptive local fusion systems for novelty detection and diagnostics in condition monitoring, Proc. SPIE AeroSense Conf., 1998, Orlando, USA, 3376:210–218. Google Scholar
- Mou J., Jones S.D., Furness RJ., Sensor-fusion methodology for reducing product quality variation, Proc. Computer Applications in Production and Engineering, 1997, London, U.K., 398–410. Google Scholar
- Liu Z., Studies on data fusion of nondestructive testing, PhD Thesis, 2000, Kyoto University. Google Scholar
- Hayashi K., Yamaji H., Nagata Y., Ishida T., Combined method of high resolution x-ray computed tomography and acoustic emission for nondestructive testing, Proc. Inter. Symp. on NDT & Stress-Strain Measurement FENDT, 1992, Tokyo, Japan, 361–366. Google Scholar
- Rakocevic M., Wang X., Chen S., Khalid A., Sattar T., Bridge B., Development of an automated mobile robot vehicle inspection system for NDT of large steel plates, Insight, 1999, 41(6):376–382. Google Scholar
- Tewari A., Gokhale A.M., Application of three-dimensional digital image processing for reconstruction of microstructural volume from serial sections, Materials Characterization, 2000, 44(3):259–269. ArticleCASGoogle Scholar
- Fink M., Prada C., Ultrasonic focusing with time reversal mirrors, Advances in Acoustic Microscopy, Eds. A. Briggs, W. Arnold, Plenum Press, New York, USA, 1996, 2:219–251. ChapterGoogle Scholar
Author information
Authors and Affiliations
- Independent NDT Centre, Bruges, France Xavier E. Gros
- Xavier E. Gros